Lipase-catalyzed Transesterification in organic Solvents: Preparation and Enantiodifferentiation of optically enriched 4(5)-alkylated 1,4(1,5)-olides

Manfred Huffer and Peter Schreier*

Lehrstuhl für Lebensmittelchemie, Universität Würzburg, Am Hubland, D-8700 Würzburg, Germany

(Received 23 *August* 1991)

Abstract: Porcine pancreatic lipase (PPL) catalyzed intramolecular transesterification of n-propyl esters of 4(5)-hydroxyalkanoic acids (C_5-C_{12}) in diethyl ether (20°C) yielded (S)-4-alkylated 1,4-olides of high optical purity (ee $> 80\%$) and optically pure (R)-4-hydroxyalkanoicn-propylesters, but exhibited low enantioselectivity for (S) -5-alkylated 1,5-olides (ee=10-20%). The chiral analysis of 4(5)-hydroxyalkanoic esters was performed by HRGC and HPLC after their derivatization with (R)-(+)-1-phenylethylisocyanate, (S)-0-acetyllactic acid chloride, and (R)-(+)-a-methoxy-a-trifluoromethylphenylacetic acid chloride. The enanticdifferentiation of 1,4(1,5)-olides was achieved by HPLC on a chiral phase (ChiraSpher) using an on-line optical rotation detector (ChiraMonitor).

Introduction

4(5)-Alkylated 1,4(1,5)-elides are widely used as intermediates in the synthesis of natural products and are important, widespread flavour compounds¹⁻³. Most of these substances are chiral compounds and their potential physiological activity, such as, e.g., odour or taste, depends on their absolute configuration^{4,5}. Due to the importance of this class of chemicals, a large number of publications dealing with their stereoselective synthesis have been provided⁶⁻⁸. As an alternative, microbial reduction of 4(5)-keto acids with subsequent lactonization has been described⁹⁻¹¹. Consequently, the use of enzymes in organic medium has also been reported. Recently, the intramolecular transesterification of 4-hydroxyalkanoic acid methyl esters using porcine pancreatic lipase (PPL) has been studied and found to be a suitable method to prepare 1,4-olides of high ee values¹². This paper concerns the PPL catalyzed transesterification of n-propyl esters of 4(5)-hydroxyalkanoic acids (C_{5,6} $C_{12,13}$ in organic solvents with respect to reactivity and enantioselectivity of lactone formation. In addition, the methods of chiral analysis of the hydroxyesters and lactones are described.

Experimental

Chemicals: The lipase from porcine pancreas (PPL, type II) was obtained from Sigma (Deisenhofen, Germany). The reactions were performed with the crude powder without further purification. The 4(5)-alkylated **1,4(1,5)-olides and all other commercial chemicals including solvents (redistilled before use) were purchased from Aldrich (Steinheim, Germany) and Roth (Karlsruhe, Germany). The 4- and 5-hydroxyallzmoic acid** esters were prepared from the corresponding lactones (i) by alkylation of their silver salts¹³, (ii) acidic alcoholysis¹⁴, and (iii) alkylation of their potassium salts⁵.

Transesterification: To a solution of 2.5 mmol of each (R,S)-4(5)-hydroxyalkanoic ester in 10 ml diethyl **ether (reactions at room temperature) or nhexane (reactions at 60 "C) 0.5 g PPL was added and the mixture continuously stirred. After defined reaction times, the enzyme was filtered off and the mixture analyzed by HRGC and HPLC.**

Separation of Products: The solution obtained after filtration of the enzyme was evaporated under vacuum. The residue was subjected to preparative thin-layer-chromatography (glass plates coated with 1.25 mm silica gel 60 PF₂₅₄) using chloroform as eluent. In all cases the hydroxyesters ($R_f = 0.2$) and the lactones ($R_f = 0.5$) **were recovered in highly pure forms (> 95% by HRGC).**

Chiral analysis of Hydroxyalkanoic Acid Esters: (i) In a conical vial 1,5 pl hydroxyester was mixed with 3 ~'1 R-1-phenylethylisocyanate (PEIC). After 2h incubation at 11O'C. 0.5 ml methanol was added and the solution analyzed by HRGC. Temperature program: 140-300°C at 6°C/min; for 4-hydroxynonanoic ester: 180-300°C at 1°C/min. (ii) In a conical vial 1 μ l hydroxyester was mixed with 10 μ l CCl₄, 5 μ l pyridin and 4 μ l S-**0-acetyllactateacide chloride (ALAC) 11915. After 3 h incubation at r.t., the solution was subjected for analysis** by HRGC. Temperature program: 140-300°C at 2°C/min. (iii) In a conical vial 2 μ l reduced 5-hydroxyester was mixed with 6 μ l (R)-(+)- α -methoxy- α -trifluoromethylphenylacetic acid chloride (MTPA-Cl) and 12 μ l **pyridine. After lh incubation at 100°C. 0.5 ml methanol was added and the solution analyzed by HPLC. Re**duction of the isolated 5-hydroxyester (50-150 mg) with LiAlH₄ (300 mg) was carried out in 20 ml diethyl ether. After refluxing for 2h, hydrolysis was performed by addition of 1 ml dist. water and 300 µl NaOH **(15%). The precipitate was filtered off and the solvent evaporated under vacuum. The residue contained pure** chiral 1,5-diols and n-propanol as confirmed by HRGC.

Capillary Gas Chromatography (ERGC): A Hewlett-Packard 5710A gas chromatograph with a Gerstel capillary injection (T=2OO'C)/detection (T=3OO'C) system was used. Split injection (1:50) was employed. The flow rates were 2.5 ml/min helium (carrier gas), 30 ml/min nitrogen (make-up gas), 30 ml/min hydrogen and 300 ml/min air (detector gases). A J&W fused silica DB-5 WCOT capillary column (30 m x 0.25 mm i.d.; d_f **= 0.25 pm) was employed. The above-mentioned temperature programs were used. Product formation rate was determined using 2-octyl dodecanoate as internal standard. The temperature program for this was 4 min isothermal at 14O"C, then 140-300°C at lO"C/min.**

High Performance Liquid Chromatography (EPLC): A Knauer pump model 64 (Berlin, Germany) with an injection valve 7125 (Rheodyne; sample loop = 20 μ) and an UV-detector (Knauer, Berlin, Germany) with variable wavelength was employed. The analysis of the diastereomeric di-MTPA esters of the diols (cf. above) **was performed at 254 nm by use of a silica gel column (250*4 mm, Knauer, Berlin, Germany) and n-hexane**diethyl ether (96+4) (3ml/min) as eluent. For the enantioseparation of the 1,4(1,5)-olides a ChiraSpher column **(Merck, Darmstadt, Germany) and n-hexane - tert. butyl methyl ether (95+5) as eluent (1.2 ml/min) were**

used^{16,17}. The determination of the order of elution was performed employing an on-line optical rotation detector (ChiraMonitor, Zinsser, Frankfurt, Germany), which connected in series with the UV-detector. Injected amounts were 50 ng/enantiomer.

Results and discussion

Preparation of I-alkylated 1,4-elides

Since 4-hydroxyalkanoic acids spontaneously lactonize, the PPL catalyzed intramolecular transesterification was carried out as outlined in Figure 1. The n-propyl esters were selected due to the following reasons: (i) with methyl and ethyl esters non-enzymatic relactonization was observed leading to a 10-20 % decrease of

$$
R = \text{methyl} - \text{heptyl}
$$

Figure 1. PPL catalyzed intramolecular transesterification of 4-hydroxyalkanoic acid n-propyl esters (scheme).

optical yield; (ii) the i-propyl esters were not accepted as substrates by the enzyme (controlled period, 10 days of reaction).

Among the methods described for the preparation of 4-hydroxyalkanoic acid n-propyl esters^{5,13,14} the nucleophilic substitution of the potassium salts of the hydroxy acids on n-bromopqane in DMF was found to be most suitable; the homologues from C_5-C_{12} were obtained in 82-96 % yields. Using these esters the PPL catalyzed transesterification was carried out in diethyl ether at 20°C. The results obtained for the series of C_5 - C_{12} hydroxy esters are summarized in Table 1. As a typical example, in Figure 2 the reaction profile of 4-hy-

Table 1. Results of the PPL catalyzed transesterification of the 4-hydroxyalkanoic acid n-propyl esters (4-C₅-4-C₁₂). (diethyl ether; $T = 20^{\circ}$ C; reaction time: 20 h)

ester	yield $(\%)^1$	%ee S-lactone	%ee R-ester	
$4-C5$	25.0	55.1	70.3	
$4-C_6$	43.7	78.6	90.1	
$4-C_7$	55.8	80.3	93.5	
$4-C_8$	60.1	77.5	>98.0	

' conversion yield

droxynonanoic acid n-propyl ester is outlined. As shown from Table 1 and Figure 2 the following conclusions can be drawn: (i) high optical yields of (S)-4-alkylated 1,4-elides (ee=80%) and 4-hydroxyalkanoic acid

Figure 2. Reaction profile of the PPL catalyzed transesterification of 4-hydroxynonanoic acid n-propyl ester. (diethyl ether; $T = 20^{\circ}$ C).

propyl esters (ee > 98%) were obtained; (ii) fast reaction rates, in particular with the long-chain homologues, were observed; (iii) a decrease of ee value was observed after reaching the reaction maximum. In comparison with other PPL catalyzed reactions ¹⁸⁻²⁰ the high reaction rates might be caused by the fact that the acyl acceptor (hydroxy function) does not need to diffuse to the acylated enzyme²¹, but is a priori available. By fixation of the hydroxy function in the substrate and a potential formation of an enantioselective hydrogen bond in **the active center of the acylated enzyme the extents of the mobilities are limited giving rise to the high optical yields of products. The above-mentioned decrease of ee values can be explained by non-enzymatic relactoni**zation of 4-hydroxyesters. This effect was observed to be more pronounced on increasing the reaction tem**perature to 60 "C (experiments carried out in n-hexane).**

Preparation of 5-alkylated 1,5-olides

The homologous series of 5-hydroxyalkanoic acid n-propyl esters of C₆-C₁₃ was subjected to PPL catalyzed **transesterification as outlined in Figure 3. The preparation of esters was achieved as mentioned above. In**

Figure 3. PPL catalyzed intramolecular transesterification of 5-hydroxyalkanoic acid n-propyl esters (scheme).

Table 2. Results of the PPL catalyzed transesterification of the 5-hydroxyalkanoic acid n-propyl esters ($5-\text{C}_6$ -5-C₁₃). (diethyl ether; $T = 20^{\circ}$ C; reaction time: 5 days)

ester	yield $(\%)^1$	%ee S-lactone	%ee R-ester	
	12.0	10.1	10.3	
$5-C_6$ $5-C_7$	12.7	10.6	11.1	
$5-C_8$	13.8	10.3	13.5	
$5-C9$	13.1	11.5	13.0	
$5-C_{10}$	15.2	13.8	13.1	
	15.9	13.9	14.1	
$5 - C_{11}$ $5 - C_{12}$	17.5	15.3	14.8	
$5 - C_{13}$	18.1	17.4	14.4	

¹ conversion yield

comparison to the 4-hydroxyalkanoic acid esters the reaction rates determined for the 5-hydroxyestem were four to five times lower. In addition, low enanticselectivity was observed (Table 2). As a typical example, in Figure 4 the reaction profile of 5-hydroxynonanoic acid n-propyl ester is outlined Increase of temperature up to 60°C (experiments carried out in n-hexane) did not improve, therefore, the preparation of optically enriched l,j-olides via transesterification of 5-hydroxyalkanoic acid n-pmpyl esters is strongly limited by the substrate specificity of PPL.

Chiral analysis

The chromatograpbic chiral analysis of the 4- and 5-hydroxyalkanoic acid esters was performed after their derivatization with optically pure reagents to diastereomers using an achiral stationary phase. The 4-hydroxyesters with chain lengths from C_5 to C_9 were separated as their 1-phenylethyl urethanes by HRGC (Table 3). The HRGC separation of long-chain homologues as well as the first three homologues of 5-hydroxyesters

Figure 4. Reaction profile of the PPL catalyzed transesterification of 5-hydroxynonanoic acid n-propyl ester. **(diethyl ether; T = 20°C)**

Table 3. Chromatographic results of the diastereomeric (S)-(-)-1-phenylethyl urethanes (PEU) and the S-ALAC esters of the 4- and 5-hydroxyalkanoic acid n-propyl esters $(4-C₅-4-C₁₂$ and $5-C₆-5-C₈)$ (cf. **Experimental).**

derivatives	t_1 (min) ¹	t_2 (min)	α^2	
$4-C5-PEU$	18.49(S)	18.73(R)	1.013	
$4-C6$ -PEU	19.46(S)	19.65(R)	1.010	
$4 - C_7 - PEU$	20.60(S)	20.71(R)	1.005	
$4-C_8$ -PEU	21.81(S)	21.90(R)	1.004	
$4 - CQ - PEU$	48.08 (S)	48.39 (R)	1.006	
$4-C_{10}$ -ALAC	35.78(S)	36.03(R)	1.006	
$4-C_{11}$ -ALAC	39.86(S)	40.06(R)	1.005	
$4-C_1$ ₂ -ALAC	43.91 (S)	44.07 (R)	1.004	
$5 - C_6 - ALAC$	21.92(R)	22.33(S)	1.022	
$5 - C_7 - ALAC$	25.44(R)	25.67(S)	1.010	
$5-Cg-ALAC$	28.73(R)	28.90(S)	1.007	

1 The order of elution was determined polarimetrically

 2α = selectivity (= t₂/t₁)

(Ce to Cg) was achieved using their diastenmmeric ALAC esters (Table 3). In order to separate the long-chain 5-hydroxyalkanoic acid n-propyl esters (C_9-C_{13}) reduction to the 1,5-diols and their derivatization to **diastereomeric di-MTPA esters were Performed. As shown from Table 4, separation of these high-boiling**

Table 4. Chromatographic results of the diastereomeric di-MTPA esters of the 1,5-diols (C₉-C₁₃) (cf. Expe**rimental).**

derivatives	t_1 (min) ¹	t_2 (min)	α^2	R^3	
$C_{\mathbf{Q}}$	11.23(S)	13.48(R)	1.200	2.3	
C_{10}	10.12(S)	12.39(R)	1.224	2.1	
C_{11}	9.46(S)	11.61(R)	1.227	2.0	
C_{12}	8.91(S)	10.89(R)	1.222	2.0	
C_{13}	8.48(S)	10.29(R)	1.213	1.9	

1 The order of elution was determined polarimetrically

 2α = selectivity (= t₂/t₁)

 $3 R =$ resolution (= $(2(t_2-t_1))/(w_1+w_2)$; w = peak with)

derivatives was achieved by HPLC on silica gel. However, due to similar retention data, homologues could not be differentiated. The chiral analysis of 4(5)-alkylated 1,4(1,5)-elides was carried out by HPLC using a chiral polyacrylamide phase (ChiraSpher)^{16,17}. The order of elution was determined using an on-line optical rotation detector (ChiraMonitor) connected in series to an UV-detector. In Table 5, the results of separation **are summarized.**

Table 5. Chromatographic results of the enantiodifferentiation of the 1,4(1,5)-elides by using ChiraSpher (cf. Experimental).

X, Y-olides	$t_S(min)^1$	t_{R} (min)	k_S^2	k_{R}	α^3	
$1,4-C_5$	19.86	22.30	7.27	8.29	1.140	
$1,4-C_6$	13.77	16.12	4.74	5.72	1.206	
$1,4-C_7$	10.66	12.59	3.48	4.29	1.233	
$1,4-C_8$	9.52	11.71	2.97	3.88	1.230	
$1,4-C9$	9.01	11.48	2.75	3.78	1.275	
$1,4-C_{10}$	8.56	10.58	2.58	3.43	1.328	
$1,4-C_{11}$	8.21	10.30	2.47	3.35	1.355	
$1,4-C_{12}$	7.97	10.06	2.33	3.21	1.377	
$1,5-C_6$	22.35	26.67	8.72	10.60	1.215	

continuation of table 5

¹ The order of the elution was determined polarimetrically

 $2 k =$ capacity factor $(=(t-t_0)/t_0)$

 3α = selectivity (= t₂/t₁)

References

- **1. Ohloff, G., in:** *Progress in the chemistry of Organic Natural Products;* **Herz, W., Grisebach, H., Kirby, G.W., ed., Springer, New York, 1978**
- **2. May, W-A., Peterson, R.J., Chang, S.S.,** *J. Food Sci.* **1987,43, 1248**
- **3. Maga, J.A.,** Crit. *Rev. Food Sci. Nutr. 1976,8,* **1**
- **4.** Silverstein, R.M., in: Semiochemistry, flavors, and pheromones; Proceedings ACS Symposium; Acree, T.E., ed., W. de Gruyter, Berlin, 1985
- **5. Mosancll, A., Giinther, C.,** *J. Agric. Food Chem. 1989.37,413*
- **6. Ravid U.. Silverstein, R.M.. Smith, L.R..** *Tetrahedron 1978,34, 1449*
- **7. Meyers, A-I., Yamamoto, Y., Mihelich, E-D., Bell, R.A., J.** *Org. Chem. 1980,45,2792*
- **8. Roder, H., Helmchen, G., Peters, E.M., Peters, K., von Schnering, H.G.,** *Angew. Chem. 1984,96,895*
- **9.** Seebach, D., Eberle, M., *Synthesis* **1986**, 37
- **10. Moriuchi, F., Muroi, H., Biro&i, A.,** *Chem. Left. 1987,* **1141**
- **11. Gessner, M., Giinther, C., Mosandl, A., Z. J?** *Nuturforsch. 1987, 42C,* **1159**
- **12. Gutman, A.L., Zuobi, K., Bravdo, T.,** *J. Org. Chem.* **1990,55,3546**
- **13. Machleidt, H., Cohnen, E., Tschesche, R.,** *Liebigs Ann. Chem. 1962, 655,70*
- **14. Brown, H.C., Keblys, K-A.,** *J. Org. Chem.* **1966,31,485**
- **15.** Krammer, G., Fröhlich, O., Schreier, P., in: Bioflavour '87, Schreier, P., ed., W. de Gruyter, Berlin, 1988
- **16. Huffer, M., Schreier, P.,** *J. Chromatogr. 1989,469, 137*
- **17. Huffer, M., Schreier, P.,** *Fresenius* **Z.** *Anal. Chem. 1989, 333*
- **18. Lutz, D., Giildner, A., Thums, R., Sclueier, P.,** *Tetrahedron: Asymmetry* **1990, 1,** *783*
- **19. Gerlach, D., Lutz, D., Mey, B,, Schreier, P., Z.** *Lebensm. Unters. Forsch. 1989, 189, 141*
- **20. Kirchner, G., Scollar, M.P., Klibanov, A.M., J. Am.** *Chem. Sot. 1985,107,7072*
- **21. Jones, J.B., Beck, J-F., in:** *Applications of biochemzcal systems in organic chemistry,* **Jones, J.B., Sib, C-J., Perlman, D., ed., Wiley, New York, 1976**